Heparanase regulates thrombosis in vascular injury and stent-induced flow disturbance.
نویسندگان
چکیده
OBJECTIVES The purpose of this study was to examine the role of heparanase in controlling thrombosis following vascular injury or endovascular stenting. BACKGROUND The use of endovascular stents are a common clinical intervention for the treatment of arteries occluded due to vascular disease. Both heparin and heparan sulfate are known to be potent inhibitors of thrombosis. Heparanase is the major enzyme that degrades heparan sulfate in mammalian cells. This study examined the role of heparanase in controlling thrombosis following vascular injury and stent-induced flow disturbance. METHODS This study used mice overexpressing human heparanase and examined the time to thrombosis using a laser-induced arterial thrombosis model in combination with vascular injury. An ex vivo system was used to examine the formation of thrombus to stent-induced flow disturbance. RESULTS In the absence of vascular injury, wild type and heparanase overexpressing (HPA Tg) mice had similar times to thrombosis in a laser-induced arterial thrombosis model. However, in the presence of vascular injury, the time to thrombosis was dramatically reduced in HPA Tg mice. An ex vivo system was used to flow blood from wild type and HPA Tg mice over stents and stented arterial segments from both animal types. These studies demonstrate markedly increased thromboses on stents with blood isolated from HPA Tg mice in comparison to blood from wild type animals. We found that blood from HPA Tg animals had markedly increased thrombosis when applied to stented arterial segments from either wild type or HPA Tg mice. CONCLUSIONS Taken together, this study's results indicate that heparanase is a powerful mediator of thrombosis in the context of vascular injury and stent-induced flow disturbance.
منابع مشابه
Integrative Physiology Heparanase Alters Arterial Structure, Mechanics, and Repair Following Endovascular Stenting in Mice
Heparan sulfate proteoglycans (HSPGs) are potent regulators of vascular remodeling and repair. Heparanase is the major enzyme capable of degrading heparan sulfate in mammalian cells. Here we examined the role of heparanase in controlling arterial structure, mechanics, and remodeling. In vitro studies supported that heparanase expression in endothelial cells serves as a negative regulator of end...
متن کاملHeparanase alters arterial structure, mechanics, and repair following endovascular stenting in mice.
Heparan sulfate proteoglycans (HSPGs) are potent regulators of vascular remodeling and repair. Heparanase is the major enzyme capable of degrading heparan sulfate in mammalian cells. Here we examined the role of heparanase in controlling arterial structure, mechanics, and remodeling. In vitro studies supported that heparanase expression in endothelial cells serves as a negative regulator of end...
متن کاملCirculating endothelial progenitor cell levels and function in patients who experienced late coronary stent thrombosis.
AIMS The pathogenesis of late coronary stent thrombosis may be related to impaired arterial healing. Endothelial progenitor cells (EPCs) have been shown to play an important role in repair and re-endothelialization following vascular injury. We hypothesized that patients who develop late stent thrombosis may have reduced or dysfunctional EPCs, and aimed to compare EPC level and function in pati...
متن کاملFatty acid-induced nuclear translocation of heparanase uncouples glucose metabolism in endothelial cells.
OBJECTIVE Heparanase is an endoglycosidase that specifically cleaves carbohydrate chains of heparan sulfate. We have recently reported that high fatty acid increased the nuclear content of endothelial heparanase. Here, we examined the mechanism and the consequences behind this nuclear translocation of heparanase. METHODS AND RESULTS Bovine coronary artery endothelial cells were grown to confl...
متن کاملEndothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes.
OBJECTIVE After diabetes mellitus, transfer of lipoprotein lipase (LPL) from cardiomyocytes to the coronary lumen increases, and this requires liberation of LPL from the myocyte surface heparan sulfate proteoglycans with subsequent replenishment of this reservoir. At the lumen, LPL breaks down triglyceride to meet the increased demand of the heart for fatty acid. Here, we examined the contribut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American College of Cardiology
دوره 59 17 شماره
صفحات -
تاریخ انتشار 2012